Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.

Identifieur interne : 003D87 ( Main/Exploration ); précédent : 003D86; suivant : 003D88

Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.

Auteurs : Marc Saura-Valls [Espagne] ; Régis Fauré ; Sergi Ragàs ; Kathleen Piens ; Harry Brumer ; Tuula T. Teeri ; Sylvain Cottaz ; Hugues Driguez ; Antoni Planas

Source :

RBID : pubmed:16356166

Descripteurs français

English descriptors

Abstract

Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcbeta1,4- and X=[Xylalpha1,6]Glcbeta1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 degrees C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes.

DOI: 10.1042/BJ20051396
PubMed: 16356166
PubMed Central: PMC1409682


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.</title>
<author>
<name sortKey="Saura Valls, Marc" sort="Saura Valls, Marc" uniqKey="Saura Valls M" first="Marc" last="Saura-Valls">Marc Saura-Valls</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faure, Regis" sort="Faure, Regis" uniqKey="Faure R" first="Régis" last="Fauré">Régis Fauré</name>
</author>
<author>
<name sortKey="Ragas, Sergi" sort="Ragas, Sergi" uniqKey="Ragas S" first="Sergi" last="Ragàs">Sergi Ragàs</name>
</author>
<author>
<name sortKey="Piens, Kathleen" sort="Piens, Kathleen" uniqKey="Piens K" first="Kathleen" last="Piens">Kathleen Piens</name>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
<author>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</author>
<author>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
</author>
<author>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
</author>
<author>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16356166</idno>
<idno type="pmid">16356166</idno>
<idno type="doi">10.1042/BJ20051396</idno>
<idno type="pmc">PMC1409682</idno>
<idno type="wicri:Area/Main/Corpus">003F07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003F07</idno>
<idno type="wicri:Area/Main/Curation">003F07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003F07</idno>
<idno type="wicri:Area/Main/Exploration">003F07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.</title>
<author>
<name sortKey="Saura Valls, Marc" sort="Saura Valls, Marc" uniqKey="Saura Valls M" first="Marc" last="Saura-Valls">Marc Saura-Valls</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faure, Regis" sort="Faure, Regis" uniqKey="Faure R" first="Régis" last="Fauré">Régis Fauré</name>
</author>
<author>
<name sortKey="Ragas, Sergi" sort="Ragas, Sergi" uniqKey="Ragas S" first="Sergi" last="Ragàs">Sergi Ragàs</name>
</author>
<author>
<name sortKey="Piens, Kathleen" sort="Piens, Kathleen" uniqKey="Piens K" first="Kathleen" last="Piens">Kathleen Piens</name>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
<author>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</author>
<author>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
</author>
<author>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
</author>
<author>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="eISSN">1470-8728</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysis (MeSH)</term>
<term>Electrophoresis, Capillary (MeSH)</term>
<term>Glucans (chemistry)</term>
<term>Glucans (metabolism)</term>
<term>Glycosylation (MeSH)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Naphthalenes (chemical synthesis)</term>
<term>Populus (enzymology)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Xylans (chemistry)</term>
<term>Xylans (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Glucanes (composition chimique)</term>
<term>Glucanes (métabolisme)</term>
<term>Glycosylation (MeSH)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Naphtalènes (synthèse chimique)</term>
<term>Populus (enzymologie)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Température (MeSH)</term>
<term>Xylanes (composition chimique)</term>
<term>Xylanes (métabolisme)</term>
<term>Électrophorèse capillaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Naphthalenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glucans</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucans</term>
<term>Glycosyltransferases</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucanes</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucanes</term>
<term>Glycosyltransferase</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Naphtalènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Electrophoresis, Capillary</term>
<term>Glycosylation</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Molecular Weight</term>
<term>Substrate Specificity</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Glycosylation</term>
<term>Masse moléculaire</term>
<term>Spécificité du substrat</term>
<term>Température</term>
<term>Électrophorèse capillaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcbeta1,4- and X=[Xylalpha1,6]Glcbeta1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 degrees C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16356166</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1470-8728</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>395</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Apr</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.</ArticleTitle>
<Pagination>
<MedlinePgn>99-106</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcbeta1,4- and X=[Xylalpha1,6]Glcbeta1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 degrees C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saura-Valls</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fauré</LastName>
<ForeName>Régis</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ragàs</LastName>
<ForeName>Sergi</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Piens</LastName>
<ForeName>Kathleen</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brumer</LastName>
<ForeName>Harry</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Teeri</LastName>
<ForeName>Tuula T</ForeName>
<Initials>TT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cottaz</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Driguez</LastName>
<ForeName>Hugues</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Planas</LastName>
<ForeName>Antoni</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009281">Naphthalenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37294-28-3</RegistryNumber>
<NameOfSubstance UI="C029353">xyloglucan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D33V8NB7KB</RegistryNumber>
<NameOfSubstance UI="C046465">8-amino-1,3,6-naphthalenetrisulfonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C073693">xyloglucan endotransglycosylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019075" MajorTopicYN="N">Electrophoresis, Capillary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009281" MajorTopicYN="N">Naphthalenes</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16356166</ArticleId>
<ArticleId IdType="pii">BJ20051396</ArticleId>
<ArticleId IdType="doi">10.1042/BJ20051396</ArticleId>
<ArticleId IdType="pmc">PMC1409682</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2003 Oct 1;375(Pt 1):61-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12826015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr. 1993 Aug 20;645(2):337-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8408418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Mar 15;330 ( Pt 3):1475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9494122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Apr;16(4):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Aug;54(7):667-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10975501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1993 Oct 4;248:285-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 1997 Sep 26;781(1-2):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Apr 1;355(Pt 1):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11256951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jul;105(3):965-974</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Dec;14(12):3073-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12468728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 May;3(5):691-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8374618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1996;200(2):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8904807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1421-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mass Spectrom. 1998 Jul;33(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9692248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 1999 Jan;9(1):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9884411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Dec;5(6):536-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Oct 15;267(29):21058-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1989 Nov 1;182(2):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2610349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1992 Aug 15;205(1):108-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1443547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Nov 1;298(2):365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1416968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jul;12(7):1229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 1996 Jan 12;720(1-2):353-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8601201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):9-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Nov 27;440(1-2):208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2005 Nov 1;346(1):115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 Feb;204(2):242-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9487728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Dec 29;1543(2):361-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jan;3(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9306698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Physiol Biophys. 2000 Dec;19(4):427-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Jul 14;126(27):8354-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15237973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1992 Mar 15;282 ( Pt 3):821-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1554366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Aug 15;390(Pt 1):105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15804235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(4):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10406121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1996 Dec;60(12):1950-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8988627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1995 Jul 20;229(1):80-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8533899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 1997;173:157-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9127953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
<name sortKey="Faure, Regis" sort="Faure, Regis" uniqKey="Faure R" first="Régis" last="Fauré">Régis Fauré</name>
<name sortKey="Piens, Kathleen" sort="Piens, Kathleen" uniqKey="Piens K" first="Kathleen" last="Piens">Kathleen Piens</name>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
<name sortKey="Ragas, Sergi" sort="Ragas, Sergi" uniqKey="Ragas S" first="Sergi" last="Ragàs">Sergi Ragàs</name>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Saura Valls, Marc" sort="Saura Valls, Marc" uniqKey="Saura Valls M" first="Marc" last="Saura-Valls">Marc Saura-Valls</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16356166
   |texte=   Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16356166" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020